

Bilal Chabbi

AZDEVOPS-AKS-PROJECT
The GitOps-Way

1

Inhalt
Introduction and Goals .. 2

Requirements Overview .. 2

Quality Goals ... 3

Stakeholders ... 4

Prerequisites ... 5

Architecture and Deployment .. 6

2

Introduction and Goals

• Underlying business goals: The software architects and development team should
align their work with the business goals of the organization. In this case, the goals
may include improving the agility and scalability of the application deployment
process, reducing operational costs, and increasing the reliability of the deployed
applications.

• Essential features: The software architects and development team should consider
the essential features that the AKS deployment process should provide, such as
automatic scaling of the AKS cluster, automatic deployment of new versions of the
application, and integration with monitoring and logging systems.

• Essential functional requirements: The software architects and development team
should identify and consider the essential functional requirements of the AKS
deployment process, such as deployment of containerized applications using
Kubernetes manifests, configuration of network policies, and integration with Azure
DevOps pipelines.

• Quality goals for the architecture: The software architects and development team
should define quality goals for the AKS deployment process, such as reliability,
scalability, maintainability, and security. They should also identify the key quality
attributes that the architecture should address, such as performance, availability,
and fault tolerance.

• Relevant stakeholders and their expectations: The software architects and
development team should identify the relevant stakeholders, such as developers,
operations teams, security teams, and business stakeholders. They should also
understand their expectations regarding the AKS deployment process, such as ease
of use, scalability, security, and compliance.

Overall, by considering these requirements and driving forces, software architects and
development teams can ensure that the AKS deployment process meets the needs of the
organization and its stakeholders while achieving the desired quality goals.

Requirements Overview

Functional requirements:

• Automatic deployment of containerized applications on Azure Kubernetes Service
(AKS)

• Automatic scaling of the AKS cluster based on application load.
• Integration with Azure DevOps pipelines for continuous integration and deployment

(CI/CD)
• Configuration of network policies for secure application communication
• Integration with monitoring and logging systems for visibility and troubleshooting
• Ability to roll back to previous versions of the application in case of errors or issues.

3

• Support for different application architectures, such as microservices and monoliths

Driving forces:

• Need to improve the agility and scalability of the application deployment process.
• Need to reduce operational costs by automating deployment and scaling processes.
• Need to increase the reliability and availability of the deployed applications.
• Need to ensure compliance with security and regulatory requirements.
• Need to provide a flexible and extensible architecture that can adapt to changing

business needs.

The "azdevops-aks-project" should provide a solution for deploying and managing
containerized applications on Azure Kubernetes Service (AKS) using Azure DevOps
pipelines. The solution should be able to automatically deploy and scale the AKS cluster
based on application load and configure network policies for secure application
communication. It could also integrate with monitoring and logging systems to provide
visibility and troubleshooting capabilities. The solution should be flexible and extensible
to support different application architectures and adapt to changing business needs. The
driving forces for this solution include the need to improve agility, scalability, and
reliability of the application deployment process while reducing operational costs and
ensuring compliance with security and regulatory requirements.

Quality Goals

Contents

1. Reliability: The architecture should be designed to ensure that the application can
operate continuously and with minimal downtime, even in the face of failures or
unexpected events. This is important to stakeholders such as operations teams, who
are responsible for ensuring the application is available and performing as expected.

2. Maintainability: The architecture should be designed to make it easy to maintain and
modify the application over time. This includes factors such as modularization, clear
separation of concerns, and adherence to best practices and standards. This is
important to stakeholders such as developers, who are responsible for adding new
features or fixing issues in the application.

3. Security: The architecture should be designed to ensure the security and integrity of
the application and its data. This includes measures such as authentication,
authorization, encryption, and secure communication protocols. This is important to
stakeholders such as security teams, who are responsible for ensuring the
application meets security and compliance requirements.

Other potential quality goals that could be relevant for the "azdevops-aks-project"
architecture, as per ISO 25010 standard, may include:

• Performance efficiency

• Compatibility

4

• Usability

• Portability

• Scalability

• Interoperability

However, the prioritization and importance of these goals would depend on the specific
needs and requirements of the stakeholders and the organization.

Stakeholders

Contents

1. Developers: Developers are responsible for implementing the application code
based on the architecture design. They need to understand the architecture to
ensure that the code they write adheres to the design principles and best practices.

2. Project managers: Project managers are responsible for planning and executing the
project. They need to understand the architecture to ensure that the project plan
aligns with the architecture design and that the project goals are met.

3. End-users: End-users are the individuals or organizations who will be using the
application. They may not need to understand the architecture itself, but they need
to be able to use the application efficiently and effectively based on the architecture
design.

4. Technical writers: Technical writers are responsible for creating documentation
for the architecture and the application. They need to understand the architecture to
create accurate and useful documentation for the stakeholders.

Overall, the stakeholders of the "azdevops-aks-project" include developers, operations
teams, security teams, project managers, business stakeholders, quality assurance teams,
end-users, technical writers, and external auditors. They may need to know about, be
convinced of, work with, or make decisions about the architecture and its development.

5

Prerequisites

1. Azure subscription: You will need an active Azure subscription to create the
required resources for this project.

2. Azure KeyVault: The safest way to store all secrets regarding the project.

3. Azure DevOps organization: You will need an Azure DevOps organization to store
the project code, track work items, and automate the CI/CD pipelines.

4. Azure Kubernetes Service (AKS) cluster: You will need an AKS cluster to deploy the
application. (Will be deployed with Terraform)

5. Docker: You will need Docker installed on your local machine to build and push
Docker images to the Azure Container Registry (ACR).

6. Azure DevOps Service connection: you need to create a Kubernetes-service-
connection with your actual kubeconfig file, a Docker-registry-service connection
with your ACR and subscription-service-connection.

7. Azure service Principal: Create or add Service Principal: to add do the following
steps az ad sp create-for-rbac --scopes /subscriptions/mySubscriptionID

8. Helm: You will need Helm installed on your local machine to package, install, and
manage Kubernetes applications.

9. kubectl: You will need kubectl installed on your local machine to manage Kubernetes
clusters.

10. Azure CLI: You will need Azure CLI installed on your local machine to create and
manage Azure resources.

11. Git: You will need Git installed on your local machine to clone and work with the
project code.

12. Visual Studio Code: You will need Visual Studio Code (or any other code editor of
your choice) installed on your local machine to work with the project code.

6

Architecture and Deployment

Contents

1. Firstly, we use Terraform to create our infrastructure. This involves creating an AKS
cluster and an ACR (Azure-Container-registry) registry. Once the infrastructure is set
up, we trigger the pipeline to deploy our application.

2. The pipeline consists of several steps. Firstly, we make a safe Azure login through
the pipeline to use the Azure CLI. This ensures that we have secure access to our
Azure resources.

a. Once we have access, we retrieve the secrets we need from the Azure Key
Vault. These secrets are set up in the pipeline environment so that we can use
them in further steps of the pipeline, such as when we build the Docker image
and push it to the ACR registry.

b. By retrieving the secrets securely from the Azure Key Vault, we ensure that
our pipeline is secure and that our sensitive information is protected.

c. Secondly, we build the application and create a Docker image. This image is
then pushed to the ACR registry.

7

d. After that, the pipeline deploys the application to the AKS cluster. We use
Helm to install the HA-Proxy ingress on the pipeline agent, and then deploy it
to the AKS cluster. The HA-Proxy ingress allows us to expose our application
to external users via an external IP.

e. Finally, we use a simple test to check whether the application and the ingress
are working correctly. The pipeline exposes the external IP for the agent, and
we evaluate it with a curl -v command to check if the application is running as
expected.

3. In summary, we use Terraform to set up our infrastructure, and then use a pipeline
to build and deploy our application to the AKS cluster. The pipeline ensures that
everything is evaluated and working correctly before exposing it to external users.

